

Perimeter, Area and Volume

Activity-1

- 1. (a) Perimeter = $\overline{AB} + \overline{BC} + \overline{CA}$ = 6 cm + 11 cm + 9 cm = 26 cmIt is a scalene triangle.
 - (b) Perimeter = $\overline{PQ} + \overline{QR} + \overline{RP}$ = (8.3 + 8.3 + 8.3) cm = 24.9 cm It is an equilateral triangle.
 - (c) Perimeter = $\overline{XY} + \overline{YZ} + \overline{ZX}$ = (7.5 + 7.5 + 12) cm = 27 cm It is an isosceles triangle.
- 2. (a) Perimeter of the triangle = 8 cm + 10 cm + 14 cm = 32 cm
 - (b) Perimeter of equilateral triangle = $3 \times \text{side} = 3 \times 6.5 \text{ cm}$ = 19.5 cm
 - (c) Perimeter of the triangle = 8 cm + 8 cm + 5 cm = 21 cm
- 3. (a) Perimeter of the square = $4 \times \text{side}$ = $4 \times 6 \text{ cm} = 24 \text{ cm}$
 - **(b)** Perimeter of the square = 4×5 cm = 20 cm
 - (c) Perimeter of the square = 4×8.5 cm = 34 cm
 - (d) Perimeter of the square = 4×4.5 cm = 18 cm
- 4. : Perimeter of the rectangle = 2(l+b)
 - (a) Perimeter = 2(6+4) cm = 2×10 cm = 20 cm
 - **(b)** Perimeter = 2(5+2.5) cm = 2×7.5 cm = 15 cm
 - (c) Perimeter = 2(3+1.2) cm = 2×4.2 cm = 8.4 cm
- 5. We know that, perimeter of the square $= 4 \times \text{side}$
 - Perimeter = $4 \times 4.5 \, \text{cm}$ = $18 \, \text{cm}$

 - Perimeter = 4×9.25 cm = 37 cm

Now, perimeter of the rectangle = 2 (length + breadth)

$$ightharpoonup$$
 Perimeter = 2 ($l + b$)

$$\Rightarrow$$
 400 = 2(140+b) \Rightarrow 400 = 280 + 2b \Rightarrow 2b = 120 \Rightarrow b = 60 cm

• Perimeter =
$$2(l+b)$$
 = $2(4.3+2.8)$ = 2×7.1 m = 14.2 m

♦ Perimeter =
$$2(l+b)$$
 $\Rightarrow 90 = 2(l+15)$
 $\Rightarrow 90 = 2l+30$
 $\Rightarrow 2l = 60 \Rightarrow l = 30 \text{ m}$

♦ Perimeter =
$$2(l+b)$$
 $\Rightarrow 78 = 2(l+b)$
 $\Rightarrow 78 = 2(l+19)$
 $\Rightarrow 78 = 2l + 38$
 $\Rightarrow 2l = 40 \Rightarrow l = 20 \text{ m}$

Putting the values in table, we get

Side of the square	Perimeter	Length	Breadth	Perimeter of rectangle
4.5 cm	18 cm	140 cm	60 cm	400 cm
156 m	624 m	4.3 m	2.8 m	14.2 m
9.25 cm	37 cm	30 m	15 m	90 m
54 m	216 m	20 m	19 m	78 m

6. Perimeter of the square $= 4 \times \text{side}$

$$\Rightarrow 84 = 4 \times \text{side}$$

$$\Rightarrow \text{side} = \frac{84}{4} = 21 \text{ m}.$$

7. The length of the lace is equal to the perimeter of the rectangular table cloth.

So, perimeter =
$$2(l+b)$$
 = $2(6+4)$ = $2 \times 10 = 20$ cm.

8. The distance covered by Rahul to complete one round of the park is equal to the perimeter of the rectangular park.

Perimeter =
$$2(l+b)$$
 = $2(30+22)$ = 2×52 = 104 m

:. Distance covered by Rahul to complete 3 rounds of the park

$$= 3 \times 104 \,\mathrm{m} = 312 \,\mathrm{m}$$

So, the distance covered by Rahul to complete 3 rounds of the park is 312 m.

9. The perimeter of square park = $4 \times \text{side}$ = $4 \times 110 \text{ m} = 440 \text{ m}$ Thus, the total wire required to fence the square park is 440 m.

So, the cost of fencing a square park is ₹ 6,600.

10. Perimeter of the triangle = sum of its sides

$$= (25 + 25 + 36) \text{ cm} = 86 \text{ cm}$$

So, the perimeter of the triangle is 86 cm.

11. The length of ribbon required is equal to the perimeter of the rectangular frame.

Perimeter =
$$2(l+b)$$

= $2(5.5+4.8) = 2 \times 10.3 = 20.6 \text{ m}$

The length of ribbon required to frame a picture will be 20.6 m.

Also, the length of ribbon required to frame 4 such pictures will be

$$= 4 \times 20.6 \,\mathrm{m} = 82.4 \,\mathrm{m}.$$

12. The length and breadth of rectangular park are 20 m and 13 m respectively.

Perimeter =
$$2(l+b) = 2(20+13) = 2 \times 33 = 66 \text{ m}$$

Aman jogs and completes 4 rounds of the park everyday.

 \therefore Distance covered by Aman everyday = $4 \times 66 \text{ m} = 264 \text{ m}$.

Activity-2

- 1. (a) Area of the square = $l \times l$ = 2.2 × 2.2 = 4.84 sq cm
 - **(b)** Area of the rectangle = $l \times b = 4.7 \times 2.5 = 11.75$ sq cm
 - (c) Area of the rectangle = $l \times b = 5.8 \times 3.5 = 20.30$ sq cm
 - (d) Area of the square = $l \times l = 3.9 \times 3.9 = 15.21$ sq cm
- 2. Area of rectangle = $l \times b$
 - (a) Area = $9 \times 4.5 = 40.5 \text{ sq cm}$
 - **(b)** Area = $16.5 \times 8 = 132.0 \text{ sq cm}$
 - (c) Area = $27 \times 12 = 324 \text{ sq cm}$
- 3. Length of rectangular tile = 24 cm = 240 mm

Breadth of rectangular tile = 40 mm

$$\therefore \qquad \text{Area} = l \times b = 240 \times 40 \text{ sq mm}$$

 $= 9600 \, \text{sg mm}$

Breadth of the rectangle
$$=\frac{1}{4} \times \text{length}$$

$$=\frac{1}{4} \times 116 \,\mathrm{m} = 29 \,\mathrm{m}$$

$$\therefore \qquad \text{Area} = l \times b$$

$$= 116 \times 29 = 3364 \text{ sq m}$$

5. Length of the square cloth
$$= 48 \text{ cm}$$

$$\therefore \qquad \text{Perimeter} = 4 \times l = 4 \times 48 = 192 \text{ cm}$$

Area =
$$l \times l = 48 \times 48 = 2304 \text{ sq cm}$$

So, the perimeter of square cloth is 192 cm and area is 2304 sq cm.

6. Length of the rectangle
$$= 6 \text{ m}$$

Breadth of the rectangle =
$$120 \text{ cm} = 1.2 \text{ m}$$

$$\therefore \qquad \text{Area} = 6 \times 1.2 \text{ sq m} = 7.2 \text{ sq m}$$

7. The area of a rectangular floor =
$$l \times b$$

$$= 16 \times 11 \text{ sq m} = 176 \text{ sq m}$$

The length of each tile =
$$40 \text{ cm} = 0.4 \text{ m}$$

$$\therefore$$
 Area of each tile = $0.4 \times 0.4 = 0.16$ sq m

Thus, number of tiles required
$$=$$
 $\frac{\text{Area of floor}}{\text{Area of one tile}}$

$$=\frac{176}{0.16}=1100$$

Thus, number of tiles required is 1100.

8. Perimeter of the square field =
$$176 \text{ m}$$

$$\Rightarrow$$
 4 × l = 176 m

$$\Rightarrow \qquad l = \frac{176}{4} = 44 \,\mathrm{m}$$

$$\therefore$$
 Area of the field = $l \times l$ = 44×44 = 1936 sq m

Now, the cost of laying grass on it is ₹ 5.50 per sq m.

∴ The cost of laying grass on 1936 sq m =
$$₹ 5.50 \times 1936$$

9. Length of the mat $= 3.5 \,\mathrm{m}$

Area of rectangular mat = 5.6 sq m

$$\therefore \text{ Breadth} = \frac{\text{Area}}{\text{Length}} = \frac{5.6}{3.5} = 1.6 \text{ m}$$

Thus, the breadth of rectangular mat is 1.6 m.

10. Length of a sheet = 324 cm

Breadth of a sheet = 144 cm

 \therefore Area of a sheet = (324×144) sq cm

Now, length of a card = 16 cm breadth of a card = 12 cm

 \therefore Area of card = (16×12) sq cm

Thus, the number of cards can be made out of a sheet = $\frac{\text{Area of a sheet}}{\text{Area of a card}}$ = $\frac{^{27}}{^{324} \times 144} = ^{9}$ = $27 \times 9 = 243$.

11. The distance covered by a boy in going five times around the square park is 1025 m.

 $\therefore \qquad \text{Perimeter of the square park} = \frac{1025}{5} = 205 \text{ m}$

Now, perimeter of square = $4 \times l$

 \Rightarrow 4 l = 205

 $\Rightarrow \qquad \qquad l = \frac{205}{4}$

 \therefore Area of the park = $l \times l$

 $= \frac{205}{4} \times \frac{205}{4} = \frac{205 \times 205}{4 \times 4}$

= 2626.56 sq m

So, the area of the park is 2626.56 sq m.

12. Length of the rectangle = 50 cm

Breadth of the rectangle = 45 cm

Area of the rectangle = 50×45 sq cm = 2250 sq cm

Side of the square = 48 cm

 \therefore Area of the square = $48 \times 48 \text{ sq cm}$

= 2304 sq cm

So, Square has more area.

Difference = (2304 - 2250) sq cm = 54 sq cm

(a) 13.

Area of part I

$$= (5 \times 1) \operatorname{sq} \operatorname{cm} = 5 \operatorname{sq} \operatorname{cm}$$

Area of part II

$$= (4 \times 2) \operatorname{sq} \operatorname{cm} = 8 \operatorname{sq} \operatorname{cm}$$

Area of combined figure = (8+5) sq cm = 13 sq cm

(b)

Area of part I

$$= (8 \times 4) \text{ sq cm} = 32 \text{ sq cm}$$

Area of part II

$$= (4 \times 4) \operatorname{sq} \operatorname{cm} = 16 \operatorname{sq} \operatorname{cm}$$

Area of combined figure = (32 + 16) sq cm = 48 sq cm

(c)

Area of part I

$$= (5 \times 1) \operatorname{sq} m = 5 \operatorname{sq} m$$

Area of part II

$$= (7 \times 1) \operatorname{sq} m = 7 \operatorname{sq} m$$

Area of part III

$$= (3 \times 1) \operatorname{sq} m = 3 \operatorname{sq} m$$

Area of combined figure = (5+7+3) sq m = 15 sq m

(d)

Area of part I

$$= (2 \times 1) \operatorname{sq} m = 2 \operatorname{sq} m$$

Area of part II

$$= (4 \times 3) \text{ sq m} = 12 \text{ sq m}$$

Area of part III

$$= (2 \times 1) \operatorname{sq} m = 2 \operatorname{sq} m$$

Area of combined figure = (2+12+2) sq m = 16 sq m

Area of inner figure

$$= (12 \times 10) \text{ sq m} = 120 \text{ sq m}$$

Area of outer figure

$$= (14 \times 12) \text{ sq m} = 168 \text{ sq m}$$

 \therefore Area of the shaded region = (168-120) sq m = 48 sq m

Area of part I

$$= (2 \times 1.5) \text{ sq m} = 3 \text{ sq m}$$

Area of part II

$$= (4 \times 1.5) \text{ sq m} = 6 \text{ sq m}$$

Area of part III

$$= (6 \times 1.5) \text{ sq m} = 9 \text{ sq m}$$

 \therefore Area of the shaded region = (3+6+9) sq m = 18 sq m

14. The total cost of white washing a wall at ₹ 25 per sq m is ₹ 12150.

Area of the wall =
$$\frac{\text{Total cost}}{\text{Rate}} \text{m}^2$$

∴ Area of the wall =
$$\frac{₹ 12150}{₹ 25}$$
 = 486 sq m

Also, length of the wall = 27 m

$$\therefore$$
 Breadth of the wall = $\frac{\text{Area}}{\text{Length}} = \frac{486}{27} = 18 \text{ m}$

So, the breadth of the wall is 18 m.

Activity-3

1.
$$l = 40 \text{ cm}, b = 24 \text{ cm}, h = 18 \text{ cm}$$

:.
$$V = l \times b \times h = 40 \times 24 \times 18 = 17280 \text{ cu cm}$$

2.
$$V = l \times l \times l = 6.2 \times 6.2 \times 6.2 = 238.328$$
 cu cm

3. (a)
$$l = 4 \text{ cm}$$
, $b = 1 \text{ cm}$, $h = 2 \text{ cm}$

$$V = l \times b \times h = 4 \times 1 \times 2 = 8 cu cm$$

(b)
$$l = 2.5 \, \text{cm}$$

$$V = l \times l \times l = 2.5 \times 2.5 \times 2.5 = 15.625 \text{ cu cm}$$

- 4. Volume of one brick = $(20 \times 16 \times 8)$ cu cm
 - Length of the wall = 10 m = 1000 cm
 - Breadth of the wall = 5 m = 500 cm
 - Height of the wall $= 64 \, \text{cm}$
 - \therefore Volume of the wall = $1000 \times 500 \times 64$ cu cm

Number of bricks required
$$= \frac{\text{Volume of the wall}}{\text{Volume of one brick}}$$
$$= \frac{\frac{50}{1000 \times 500 \times 64}}{\frac{20}{20} \times 10 \times 8} = 12500$$

So, 12500 bricks will be required.

5. Volume of the water tank = 576 ℓ = 576000 cu cm

Length of the water tank = 160 cm

Depth of the water tank = 45 cm

 $\therefore \text{ Width of the water tank} = \frac{\text{Volume}}{\text{length} \times \text{depth}}$

$$= \frac{576000^{12800}^{80}}{1160 \times 45} = 80 \text{ cm}$$

So, width of the water tank is 80 cm.

- **6.** Length of the cube = 60 cm
 - \therefore Volume of the cube = $60 \times 60 \times 60$ cu cm = 216000 cu cm

Volume of the metal rod = $180 \times 120 \times 100$ cu cm

 $\therefore \text{ Number of cubes formed } = \frac{\text{Volume of the metal rod}}{\text{Volume of one cube}}$

$$= \frac{{27}^{1} {20} \times 100^{5}}{{60} \times {60} \times {60}^{3}} = 10$$

So, 10 cubes can be formed.

Mental Maths Corner

- 1. (a) (iv) (b) (iii) (c) (ii) (d) (iii) (e) (iv) (f) (ii)
- 2. (a) 256 sq m (b) sq cm (c) 8 cu cm (d) 1000

Review Exercise

- 1. (a) false
- (b) true
- (c) true
- (d) false
- 2. (a) Perimeter of square = $4 \times l = 4 \times 13$ cm = 52 cm
 - (b) Perimeter of triangle = (7+6+3) cm = 16 cm
 - (c) Perimeter of rectangle = $2(l+b) = 2(10+4) = 2 \times 14 = 28$ cm
 - (d) Perimeter of square = $4 \times l = 4 \times 17$ cm = 68 cm
- 3. (a) l = 8.5 cm, b = 2.5 cm

 \therefore Area of rectangle = 8.5 × 2.5 sq cm = 21.25 sq cm

(b) $l = 32 \,\text{m}, b = 0.5 \,\text{m}$

 \therefore Area of rectangle = 32 × 0.5 sq m = 16 sq m

4. The length of rectangular field = 72 m

Its breadth $=\frac{1}{3} \times 72 \text{ m} = 24 \text{ m}.$

- :. Perimeter = 2(l+b) = 2(72+24) m = 2×96 m = 192 m and area = $l \times b$ = 72×24 sq m = 1728 sq m
- 5. Side of the square tile = 12 cm
 - \therefore Area of one tile = 12×12 sq cm = 144 sq cm

Now, length of the floor $= 3.6 \,\mathrm{m}$

Breadth of the floor = 2 m

- $\therefore \qquad \text{Area of the floor} = 3.6 \times 2 \text{ sq m} = 7.2 \text{ sq m}$ = 72000 sq cm
- $\therefore \text{ Number of tiles placed on the floor} = \frac{\text{Area of the floor}}{\text{Area of one tile}}$

$$=\frac{72000}{144} = 500$$

So, number of tiles placed on the floor is 500.

6. (a) Perimeter of the shaded portion
= (2+6+6+2+6+6+2+6+6+2+6+6) m
= 56 m
Now, area of complete figure = 14 × 14 sq m

 $= 196 \, \text{sq m}$

- \therefore Area of unshaded figure = 6×6 sq m = 36 sq m
- \therefore Area of 4 unshaded figures = 4×36 sq m = 144 sq m
- \therefore Area of shaded figure = (196 144) sq m = 52 sq m.
- (b) Perimeter of shaded portion = (8+7+3+5+5+2) cm = 30 cm 8 cm Now, area of figure I = (8×2) sq cm \boxed{I} = 16 sq cm and area of figure II = (5×3) sq cm
 - \therefore Area of shaded portion = (16 + 15) sq cm = 31 sq cm.

= 15 sq cm

7. The total cost of flooring a room at ₹ 80.50 per sq m is ₹ 4830.

$$\therefore \text{ Area of the floor} = \frac{4830}{80.50} = 60 \text{ sq m}$$

Also, length of the floor = 8 m

$$\therefore Breadth = \frac{Area}{Length} = \frac{60}{8} = 7.5 \text{ m}$$

8. The length of the rectangular field = 32 m

Its breadth =
$$\frac{1}{4}$$
 × length = $\frac{1}{4}$ × 32 m = 8 m

$$\therefore \text{ Area = length} \times \text{breadth}$$
$$= 32 \times 8 = 256 \text{ sq m}$$

So, area of the field is 256 sq m.

9. Length of rectangle = 144 cm

Breadth of rectangle = 80 cm

.. Area =
$$144 \times 80 \text{ sq cm}$$

= $11520 \text{ sq cm} = 1.152 \text{ sq m}$

So, area of the rectangle is 1.152 sq m.

10. Length of the rectangle = 70 m

Breadth of the rectangle = 56 m

Perimeter =
$$2(l+b) = 2(70+56)$$
 m
= 2×126 m = 252 m

 \therefore Area of rectangle = $l \times b = 70 \times 56$ sq m = 3920 sq m Now, perimeter of square = perimeter of rectangle

$$4l = 252 \implies l = \frac{252}{4} = 63 \text{ m}$$

So, area of the square $= 63 \times 63$ sq m = 3969 sq m Difference in area = (3969 - 3920) sq m = 49 sq m So, square has 49 sq m more area than the rectangle.

11. Length of the swimming pool= 25 m

Its breadth
$$= 10 \text{ m}$$

Depth
$$= 3 \, \text{m}$$

:. Volume of water in the swimming pool = $(25 \times 10 \times 3)$ cu m = 750 cu m = 750000ℓ [:: 1 cu m = 1000ℓ]

So, 750000 ℓ of water is required to fill the swimming pool.

12. Length of rectangular tank = 3.5 m

Depth =
$$0.75 \, \text{m}$$

Volume = 4.2 cu m

∴ Width of the tank =
$$\frac{\text{Volume}}{\text{length} \times \text{depth}}$$

= $\frac{4.2}{3.5 \times 0.75}$
 $\frac{6}{42} \times \frac{2}{100} = \frac{8}{5} = 1.6 \text{ m}$

So, width of the tank is 1.6 m.

13. (a)
$$l = 15 \text{ cm}$$
, $b = 12 \text{ cm}$, $h = 7.5 \text{ cm}$

$$\therefore V = l \times b \times h$$

$$= (15 \times 12 \times 7.5) \text{ cu cm}$$

(b)
$$l = 4.5 \text{ m}$$
, $b = 3.2 \text{ m}$, $h = 2 \text{ m}$
 $\therefore V = l \times b \times h$
 $= (4.5 \times 3.2 \times 2) \text{ cu m}$
 $= 28.80 \text{ cu m}$

 $= 1350 \, \text{cu cm}$

14. Length of resulting cuboid =
$$5 \times 4$$
 cm = 20 cm

Breadth
$$= 4 cm$$

$$\therefore$$
 Volume of resulting cuboid = $l \times b \times h$

$$= 20 \times 4 \times 4$$
 cu cm

15. Length of cubical box =
$$120 \text{ cm}$$

$$\therefore$$
 Volume of cubical box = $(120 \times 120 \times 120)$ cu cm

Also, volume of one cuboidal book = $(20 \times 12 \times 6)$ cu cm

.. Number of books required to fill in the cubical box

=
$$\frac{\text{volume of cubical box}}{\text{volume of one cuboidal book}}$$

= $\frac{10}{120 \times 120 \times 120}$ = 1200

So,1200 books will be required to fill in the cubical box.

16. Length of water tank = 4 m

Its breadth $= 1.5 \,\mathrm{m}$

and depth = 1m

:. Volume =
$$l \times b \times h$$
 = $(4 \times 1.5 \times 1)$ cu m
= 6 cu m
= 6000ℓ

So, the volume of water tank is 6 cu m or 6000 ℓ .

HOTS

The only possible dimensions of a rectangular board are

Perimeter =
$$2(l+b) = 2(6+3) = 18$$
 units,

Area =
$$l \times b = 6 \times 3 = 18$$
 sq units

So, the numerical values of perimeter and area of the rectangular board are equal.